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THE EFFECTS OF SHOT-PEENING RESIDUAL STRESSES ON THE FRACTURE

AND CRACK-GROWTH PROPERTIES OF D6AC STEEL

Wolf Elber

NASA Langley Research Center

Hampton, Virginia

Summary

The fracture strength and cyclic crack-growth properties of surface-

flawed, shot-peened D6AC steel plate were investigated. For short crack lengths

(up to 1. 5 mm) simple linear elastic fracture mechanics - based only on applied

loading - did not predict the fracture strengths. Also, Paris' Law for cyclic

crack growth did not correlate the crack-growth behavior. To investigate the

effect of shot-peening, additional fracture and crack-growth tests were per-

formed on material which was precompressed to remove the residual stresses left

by the shot-peening. Both tests and analysis show that the shot-peening resid-

ual stresses influence the fracture and crack-growth properties of the material.

This report presents the analytical method of compensating for residual stresses

and the fracture and cyclic crack-growth test results and predictions.

Introduction

When a material is shot-peened, the residual compressive stresses at the

surface prolong the fatigue life. A recent investigation of the fracture and

cyclic crack-growth properties of shot-peened surface-flawed D6AC steel revealed

some anomalies in these properties. The present study was conducted to show

that the residual stresses at the surface caused these anomalies. The study

was both experimental and analytical.

A simple mathematical model was constructed to evaluate the contribution

of the residual stresses to the stress intensity. For an assumed residual
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stress distribution, the effect of the residual stresses explained the dis-

crepancies between the experimental results and the linear elastic fracture

mechanics analysis. In a series of tests, specimens were precompressed to a

permanent compressive strain of 0.1 percent to remove the residual stresses

left by shot-peening. Fracture and cyclic crack-growth tests showed that the

properties were in good agreement with linear elastic fracture mechanics

analysis.

List of Symbols

A,B Compliance gage calibration constants

a Depth of surface crack (m)

b Distance of concentrated force from free surface (m)

C Crack-growth constant

COD Crack-opening displacement (m)

c One-half of surface length of surface crack (m)

f(b/a) Geometric function in stress intensity solution

KEC Stress intensity for an edge crack (N/m3/2)

Keff Effective stress intensity range (N/m/2)

KIc Fracture toughness value (N/m3/2)

KRES Stress intensity due to residual stresses (N/m3/2)

KS Stress intensity due to stress S (N/m3/2)

KSC Stress intensity for a surface crack (N/mS/2)

n Crack-growth exponent

P Applied load or concentrated force (N)

Q Surface crack shape factor

S Externally applied stress (N/2)

8 Depth-of-shot-peening parameter (m)
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AKeff Range of stress intensity (N/P / 2)

SC  Compressive residual stress (N/m2 )

aT  Tensile residual stress (N/m2 )

da
Crack growth per cycle (m)dN

Residual Stress Model

General

Most machining operations and surface treatments leave residual stresses

in the material. The distribution and depth of these residual stresses depend

on the particular process. The D6AC material used in this investigation prob-

ably contained residual stresses caused by rolling, heat-treating, and shot-

peening processes. These residual stresses were not measured for this study.

Rather, their distribution was estimated from earlier measurements of residual

stresses caused by the machining and surface treatments l1].

When a crack is growing through.a shot-peened surface, the stress inten-

sity at the crack front is influenced by the residual stresses. The effect of

these stresses is to cause the crack to remain closed until the externally

applied stress can overcome the action of the residual stresses. The effective

stress intensity of the crack tip is obtained by superimposing the solution for

the stress intensity due to external loading and the solution for the stress

intensity due to the residual stresses. The crack will open when the effective

stress intensity is positive.

Methods exist for the analysis of the stress intensity at the tip of a

crack due to these residual stresses. The distribution of stresses and the

stress intensity calculation are described in the next two sections.
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The Residual Stress Distribution

The residual stress distribution caused by shot-peening is compressive

near the surface and tensile to some depth below the surface. To simplify the

stress intensity calculation a piecewise linear residual stress distribution

was assumed. The shape of this distribution is given to Figure 1.

Three parameters define the assumed residual stress distribution. The

depth of the constant compressive stress is 5, the remaining stress distribu-

tion defined in multiples of 8. The compressive stress is aC and the peak

value of the residual tensile stress is aT. When a flaw exists in a shot-

peened surface, a surface crack originating at the flaw must grow through this

residual stress field. The model derived here is designed to calculate the

influence of the residual stress field on the fracture and cyclic crack-growth

behavior of such a surface crack.

Determination of Stress Intensity

For a linear distribution of stress on the surface of an edge crack, a

closed-form solution for the stress intensity was obtained by Benthem and

Koiter [2]. This solution is shown in part (a) of Figure 2. It was used for

the analysis of stress intensities for crack lengths shallower than 8.

To obtain a solution for cracks deeper than 8, the piecewise linear

distribution was divided into a series of concentrated force pairs. A solution

for a single force pair is given in Reference [3], and shown in part (b) of

Figure 2. The residual stress intensity KRES was obtained by the summation,

KRES = Ki (1)

where Ki is given in Figure 2, and the Pi are the equivalent concentrated

forces substituted for the residual stress distribution.



The analytical approximation shown in Figure 2 for the function f(b/a)

was obtained by fitting a curve to the numerical results presented in [3].

The Surface Flaw

The solutions described for the stress intensity due to residual stresses

apply to an edge crack or to a surface crack of a/2c = 0. To apply the solu-

tions to a surface crack of semicircular shape, the stress intensity for the

edge crack KEC is divided by the square root of the surface flaw shape

factor Q.

KSC = KEC (2)

Fracture Strength

The fracture strength of a cracked component is determined by the effective

crack' front stress intensity and the fracture toughness of the material. The

effective stress intensity is the sum of the residual stress intensity KRES'

and the stress intensity from the applied stress S,

K = KRES + KS (3)

At fracture the effective stress intensity is equal to the material's fracture

toughness, so that

KRES + KS = KIc (4)

The residual stress intensity KRES can be obtained from the calculation

described by Equation (1). The stress intensity caused by the applied loading

S is given by

Ks = 1.12 SFT (5)

Equations (1), (4), and (5) can be combined to obtain the fracture strength,

S = (KIc - KRES) 1.12 (6)
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Cyclic Crack Growth

The rate of cyclic crack growth is assumed to be a function of the effec-

tive stress intensity of the form

da

d-N = C (a6Ke ) (7)
dN eff

For zero-to-tension loading, and a residual stress intensity KRES,

Equation (5) becomes

da C (K + KRE)n (8)

for (KS + KRES ) > 0

Experiments

'General

As part of the F-111 Recovery Program, fracture strength tests and cyclic

crack-growth tests were conducted on specimens cut from several plates of "low-

toughness" D6AC steel. The general mechanical properties of this material have

been summarized in [4]. That report presents results of studies from several

laboratories including Langley Research Center.

The tests reported herein were carried out on the same stock of material

as the tests reported in [4]. The plates from which specimens were cut had

been shot-peened and cadmium-plated. As part of the present study, a small

number of specimens were loaded to a permanent compressive strain of 0.1 percent

to eradicate the residual stresses caused by shot-peening. These precompressed

specimens were then used to generate a new set of fracture strength and crack-

growth data for comparison with the data from the shot-peened material.
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Specimens

Hour-glass shaped specimens (Fig. 3) were cut from the plate stock. The

center line was parallel to the rolling direction. Semicircular notches were

electromachined into the test section to start the fatigue cracks.

Fracture strength test specimens were precracked to the desired crack

depth at (275 MN/m2 ) stress range by applying zero-to-tension cyclic loads.

Instrumentation

Crack depth was monitored by the compliance technique using the NASA COD -

gage (Fig. 4). The gage length of this gage is 1.2 mm. The electrical signals

representing load and crack-opening displacement (COD) were displayed on an X-Y

oscilloscope; compliances - and hence crack lengths - were computed from photo-

graphic records of the display using an equation

d (COD) = A + Ba
dB

The constants A and B had previously been determined for the gages

used.

Loading

The specimens were loaded uniaxially in a 1.8-MN-capacity servo-hydraulic

testing machine. The test frequency for cyclic crack-growth tests was 3 Hz.

The load rate for fracture tests was 15 KN/sec.

Environment

Cyclic crack-growth tests were conducted in laboratory air at 283 K and

70 percent RH. Fracture strength tests were conducted in a dry gaseous nitrogen

atmosphere at 233 K.
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Results and Discussion

Fracture Strength

Figure 5 shows the fracture strengths for eight shot-peened specimens

tested under cryogenic conditions. The solid line is a line of constant stress

intensity fitted to the fracture strength data for the four longest crack

lengths. The data for short crack lengths deviate markedly from the constant

stress intensity line.

Four additional fracture specimens were tested. These specimens were pre-

compressed to a permanent residual strain of 0.1 percent to remove the residual

stresses caused by the shot-peening process. The fracture strengths for these

specimens are shown in Figure 6. The solid line in that figure is the same as

the constant stress intensity line shown in Figure 5. The fracture strengths

obtained for the shorter crack lengths in precompressed specimens do not deviate

significantly from the line of constant stress intensity. This leads to the

conclusion that the apparent higher toughness for short crack lengths in the

shot-peened material (Fig. 5) is caused by residual stresses from the

shot-peening.

To test this conclusion, fracture strength calculations were made with the

residual stress model. Model parameters were selected to simulate the residual

stress distribution assumed to exist in the shot-peened material. The parame-

ters were 5 = 0.5 mm, aC =  15 MN/m 2 , 
T = 240 MN/m 2 , and KIc = 48 MN/m 3 / 2

Figure 7 shows the predicted fracture strength as a function of crack length

for a plate containing a semicircular surface flaw and having a residual stress

distribution shown in Figure 1. The dotted line is a line of constant stress

intensity based only on external loading (KS = 48 MN/m2). For short crack

lengths, the model predicts that fracture strengths are higher than predicted
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by considering the external loading only. This result is consistent with the
test results from the shot-peened specimens (Fig. 5).

Cyclic Crack Growth

Figure 8 shows the crack-growth rate for zero-to-tension loading as a
function of the stress intensity range for the shot-peened material. The data
from tests at three stress levels (275 MN/m 2 , 414 MN/m 2 , and 690 MN/m 2 ) fall
along distinctly separate curves. The dotted line represents cyclic crack-

growth data obtained from compact tension specimens in investigation [4]. In
that investigation cracks were grown from the edge of the plate and, therefore,
were less affected by the shot-peening residual stresses.

Figure 9 shows cyclic crack-growth data from three specimens after a pre-
compression cycle. The stress levels in this investigation were identical to
those for the data of Figure 8. The dotted line in Figure 9 is the same refer-
ence line as shown in Figure 8.

The data from the precompressed specimens agree with the data from the
compact tension tests, and can be described by the Paris' Law, where

da n
d- C (ZK) (9)

and

C = 1.87 x 10- 1 2  n = 2.72

To show that the stress-level effect shown in Figure 8 for shot-peened

specimens is caused by the residual stresses, the effect of the residual

stresses on the cyclic crack-growth rate was calculated with Equation (8). The
model parameters were the same as those used for the fracture strength

calculations.

Figure 10 shows the calculated cyclic crack-growth rates as a function of
the stress intensity range KS, the stress intensity due to the external loading.
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The three curves labeled with stress levels represent the computed crack-growth

behavior for those three stress levels used in the experiment. The curve

labeled "No Residual Stress" represents the basic Equation (9).

The model calculations showed that the residual stress intensity was nega-

tive for crack lengths smaller than 1.3 mm, and was positive for crack lengths

larger than 1.3 mm.

For crack lengths shorter than 1.3 mm the crack-growth rates were lower

than predicted by Paris' Law; for crack lengths larger than 1.3 mm, crack-growth

rates were faster than predicted by Paris' Law.

The results in Figure 10 show that for lower values of applied stress the

crack-growth rate is higher for the same stress intensity range. This result

is qualitatively the same as that obtained experimentally from the shot-peened

material.

Conclusion

1. The fracture strength and cyclic crack-growth properties of D6AC steel

were affected by the residual stresses left by the shot-peening.

2. Compression residual streds near the surface caused shallow cracks to

grow more slowly than observed for cases without residual stress. Tension

residual stresses below the shot-peened layer caused deeper cracks to grow more

rapidly than observed for cases without residual stress.

3. Compression residual stresses near the surface gave shallow cracks an

apparent fracture toughness higher than the fracture toughness of the stress-

free material. Tension residual stresses below the shot-peened layer gave

deeper cracks an apparent fracture toughness lower than the fracture toughness

of the stress-free material.
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4. A simple model based on the contribution of the residual stress to the

effective stress intensity explains the trends in both fracture strength and

cyclic crack growth.
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TABLE 1. CHEMICAL COMPOSITION AND MECHANICAL

PROPERTIES OF D6AC STEEL

Chemical Composition

Element Percent Mechanical Properties

C 0.48 Yield strength 1450 MN/m 2

Mn 0.83 Ultimate strength 1600 MN/m 2

P 0.01 Elongation 14%

S 0.005

Si 0.28

Ni 0.58

Cr 1.06

Mo 1.01

V 0.1

Cu 0.15
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